Grasping Detection using Deep Convolutional Neural Network with Graspability
نویسندگان
چکیده
منابع مشابه
Pedestrian Detection with Deep Convolutional Neural Network
The problem of pedestrian detection in image and video frames has been extensively investigated in the past decade. However, the low performance in complex scenes shows that it remains an open problem. In this paper, we propose to cascade simple Aggregated Channel Features (ACF) and rich Deep Convolutional Neural Network (DCNN) features for efficient and effective pedestrian detection in comple...
متن کاملDouble-Star Detection Using Convolutional Neural Network in Atmospheric Turbulence
In this paper, we investigate the usage of machine learning in the detection and recognition of double stars. To do this, numerous images including one star and double stars are simulated. Then, 100 terms of Zernike expansion with random coefficients are considered as aberrations to impose on the aforementioned images. Also, a telescope with a specific aperture is simulated. In this work, two k...
متن کاملAssociating Grasping with Convolutional Neural Network Features
In this work, we provide a solution for posturing the anthropomorphic Robonaut-2 hand and arm for grasping based on visual information. A mapping from visual features extracted from a convolutional neural network (CNN) to grasp points is learned. We demonstrate that a CNN pre-trained for image classification can be applied to a grasping task based on a small set of grasping examples. Our approa...
متن کاملFacial Key Points Detection using Deep Convolutional Neural Network - NaimishNet
Facial Key Points (FKPs) Detection is an important and challenging problem in the fields of computer vision and machine learning. It involves predicting the co-ordinates of the FKPs, e.g. nose tip, center of eyes, etc, for a given face. In this paper, we propose a LeNet adapted Deep CNN model NaimishNet, to operate on facial key points data and compare our model’s performance against existing s...
متن کاملCell Detection with Deep Convolutional Neural Network and Compressed Sensing
The ability to automatically detect certain types of cells in microscopy images is of significant interest to a wide range of biomedical research and clinical practices. Cell detection methods have evolved from employing hand-crafted features to deep learningbased techniques to locate target cells. The essential idea of these methods is that their cell classifiers or detectors are trained in th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Robotics Society of Japan
سال: 2018
ISSN: 0289-1824,1884-7145
DOI: 10.7210/jrsj.36.559